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On Correlation Coefficient 

 
 
The correlation coefficient indicates the degree of “linear dependence” of two random 
variables. It is defined as  
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Properties: 
1. 1|| ≤xyr  .  (See appendix for the proof of this property.) 

2. If 0|| =xyr  then 
~
x  and 

~
y  are called uncorrelated random variables. (Note that two 

independent variables are guaranteed to be uncorrelated; but the reverse is not true in 
general. So there can be two random variables which are uncorrelated, but 
dependent.) 

3. baxyrxy +=⇔= 1||   Here a and b are non-random parameters, i.e. scalars. This 

relation shows that when 1|| =xyr , then the random variable 
~
y  is a linearly related to 

~
x  and vice-versa. If 1|| =xyr , knowing 

~
y  or 

~
x  is sufficient to determine the other 

one through baxy += . So knowing one of two random variables is as good as 
knowing the both of them.  (See appendix for the proof of this property.) 

4. In many applications, we can estimate the correlation coefficient between two random 
variables by conducting experiments. In practice we use the correlation coefficient to 
predict the value of  

~
y  (something of interest) when we can only observe 

~
x . We are 

not lucky to observe 
~
y  directly in many applications. If 

~
y  and 

~
x   are closely related, 

then we may expect that we can reliably predict  
~
y  from 

~
x .  

 
Lets say we are interested in 

~
y ; but have only  

~
x  and we know the correlation 

coefficient between 
~
x  and 

~
y . You will learn in some other courses that we can 

predict 
~
y as follows yxxry

x

y
xy +−= )(ˆ

σ
σ

.  This is the best linear prediction of 
~
y  in 

the mean square sense. (You will also hear about mean square sense at these  
courses.)   
 



Remember that we have noted in item 3 the following: If 1|| =xyr , the knowing 
~
x  or 

~
y  is as good as knowing both of them. Therefore we expect to have zero prediction 

error in this case. For other xyr  values, the value of the prediction error is not 

immediately clear.  
 
The graph given below shows the mean square error (approximation error) for a 
general value of xyr . As expected, the mean square error is zero, when 1|| =xyr  and as 

the magnitude of correlation coefficient decreases, the error increases. The error 
reaches its maximum when two random variables are uncorrelated.  
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rxy=linspace(-2,2,100).*rect(linspace(-2,2,100),-1,1);  
plot(linspace(-2,2,100),2*(1-rxy.^2).*rect(linspace(-2,2,100),-1,1)); 
grid on; xlabel('r_{xy}');  
title('Mean Square Error of the prediction= \sigma_y^2(1-r^2_{xy})'); 
axis([-2 2 0 2.5])  
 
[For more info Hayes, Statistical Digital Signal Processing and Modeling, p. 70]  
 
 
Examples with Scatter Plots:  
 
Lets say that we want to learn 

~
y ; but we can only observe 

~
x . Let the observation model 

be given as  



~~~
nxy +=  

Here 
~
n  is the effect of noise. (You can assume zero mean noise without any harm or loss 

of generality.) The correlation coefficient between 
~
x  and 

~
y  can be calculated as  
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Lets start with the case of little noise When noise is little, i.e. variance of noise is small; 

xyr  is close to 1.  

 
 
 
 
 
 
 
 
 
 

999.0=xyr  
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x = y + n; n is the random noise on y,
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The plot given above is called scatter plot and it is drawn by randomly generating 

~
x  and 

~
n  and calculating 

~
y  through 

~~~
nxy += .  If there were no noise, y = x ; but unfortunately 

there is noise in any observation.  
 
The scatter plot is drawn by putting cross marks (x) where the randomly generated 

~
x  and 

calculated 
~
y  are on the (x,y) plane. There are 1000 crosses in the given figure.  

 
So we conclude from this figure, when there is little noise, knowing 

~
x  can be as good as 

knowing 
~
y  , which is wonderful.  

 



Below we have some other scatter plots. The noise level is higher in these plots, therefore 
there is a bigger spread around the y=x line.  
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y = x + n; n is the random noise on y,
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99.0=xyr  
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75.0=xyr  
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5.0=xyr  
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25.0=xyr  
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01.0=xyr  
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y = x + n; n is the random noise on y,
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So as a conclusion, the correlation coefficients show how much two random variables are 
related to each other in a linear way.  
 
Matlab code for scatter plots:  
 
x=10*rand(1,1000);  
  
rxy=0.25;  
  
sigmax2=10^2/12;  
%rxy= sqrt(sigmax2/(sigmax2+sigman2)  
sigman2 = (1/rxy^2-1)*sigmax2,  
  
y=x + sqrt(sigman2)*randn(size(x));  
plot(x,y, 'x' );  
title([ 'Scatter plot for (x,y) pairs'  char(10) 'x = y + n; n is the 
random noise on y,'  char(10) ' r_{xy}='  num2str(rxy)]);  
xlabel( 'x' ),ylabel( 'y' );  
 
 
 
 

Non-Linearly Related Random-Variables and Correlation Coefficient 
 
In the previous section, we have tried to interpret the correlation coefficient for a linear 
observation model. Linear observation model means that the signal of interest is mapped 
to the output through a linear function. In the example presented in the previous section, 
the model is extremely simple (but useful) one, nxy += .  In this section, elaborate 
further on the same topic; but we switch to the non-linear observation models such as 

nxy += 2 .  
 
As in the previous example, lets assume that x is uniformly distributed in [0,∆]. Then 

2
}{

∆=xE , 
3

}{
2

2 ∆=xE , 
4

}{
3

3 ∆=xE  and so on. We will construct a non-linear function 

of x in the form bxaxxfy −== 2)(  such that the correlation coefficient of x and y is 
zero! (Note that, we are not adding any noise to the observations. The correlation is zero 
in the absence of noise!) 
 
The correlation coefficient is expressed as follows: 
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It is clear that for the correlation coefficient to be zero, 0}{ =− yxxyE .   
 



 
 
Let’s calculate }{ xyE :  
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Similarly we can calculateyx  as follows: 
46232

232 ∆−∆=




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 ∆−∆∆= babayx . Now we 

are ready to evaluate yxxyE −}{ :  
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From the last relation, we can conclude that when 
∆

= 1

b

a
, the correlation coefficient of x 

and y is zero.  
 
The following figure presents, the scatter plot for the linear observation model and the 
non-linear observation model. We are assuming that both observation models have the 
same noise, i.e. noise is zero-mean Gaussian and have identical variance.  
 
For the plot given in top part of the figure, the correlation coefficient for linear model is 
set to 0.99.  For the non-linear observation model, it is equal to 0 since we have set 

∆
= 1

a  and 1=b .  

 
From these figures, we can see the correlation coefficient of two random variables having 
a non-linear relation between them should be treated with care. From these figures, it is 
clear that when the effect of noise is little, it is possible to say something about x given 
observation y for both models. At least, it is possible to reduce the set of possibilities for 
the unknown x given y. Unfortunately, the correlation coefficient of the non-linear 
observation model is equal to zero irrespective of the noise level corrupting the 
observations. Hence correlation coefficient and related ideas are especially useful for 
linear observation models.  
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Scatter plot for (x,y) pairs
y = x + n (blue) and y=1/∆ x2 - x + n (red) 
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Scatter plot for (x,y) pairs
y = x + n (blue) and y=1/∆ x2 - x + n (red) 
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The following is the Matlab code generating the figure presented above.  
 
 
Delta=10;MCnum=1e3; 
x=Delta*rand(1,MCnum); 
  
rxy=0.9; 
  
sigmax2=Delta^2/12; 
%rxy= sqrt(sigmax2/(sigmax2+sigman2)  
sigman2 = (1/rxy^2-1)*sigmax2, 
  
y1=x + sqrt(sigman2)*randn(size(x)); 
y2=1/Delta*x.^2 - x + sqrt(sigman2)*randn(size(x));  
plot(x,y1, 'x' ); hold all ; 
plot(x,y2, 'xr' ); hold off ; 
title([ 'Scatter plot for (x,y) pairs'  char(10) 'y = x + n (blue)'  ...  
       ' and y=1/\Delta x^2 - x + n (red) '  char(10) ...   
       ' r_{xy_1}='  num2str(rxy) ...  
       ' r_{xy_2} = 0'  ]); 
xlabel( 'x' ),ylabel( 'y' ); 
  
corr_coef1 = 1/MCnum*sum((x-mean(x)).*(y1-mean(y1)) )/sqrt(var(x)*var(y1)), 
corr_coef2 = 1/MCnum*sum((x-mean(x)).*(y2-mean(y2)) )/sqrt(var(x)*var(y2)), 
 

 
The last two lines of the Matlab code generates an estimate for the correlation coefficient. 
The estimate is produced by estimating the mean, variance and cross-correlation of 
random variables from the experimental data.  
 
When MCnum is set to 10,000 and the script is run, we get the following result: 
 
corr_coef1 = 
 
    0.9001 
 
 
corr_coef2 = 
 
   -0.0085 
 
This result shows that the correlation coefficient for the linear model is almost equal to 
0.9 (as expected) and there is indeed very little correlation between x and y for the non-
linear model.  
 
 
 
 
 
 
 



Appendix: 
 

Proof of baxyrxy ++++====⇔⇔⇔⇔==== 1||  

It can be noted that that from the definition of xyr  that xyr  does not depend on the mean 

values of x andy . Without loss of any generality, we assume that x andy are zero mean. 

Then the result to be proved and the definition of xyr  reduces to axyrxy =⇔= 1|| ,  
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i. Proof of  axyrxy =⇐= 1||  

 
If  ,axy =  then 2}{ xaxyE σ= , 222}{ xayE σ= , and 22}{ xxE σ= , then 
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ii. Proof of  axyrxy =⇒= 1||  

 
Let )(ψP  be a quadratic polynomial in ψ . )(ψP  is defined as follows: 

( ) .}{}{2}{}{)( 22222 cbayExyExEyxEP ++=+−=−= ψψψψψψ  It is clear that 

0)( ≥ψP  for all ψ  values. Then the discriminant of )(ψP , i.e. ,42 acb −=∆   should 
be either 0 or negative valued. The discriminant can be calculated as 

( ) }{}{4}{2 222 yExExyE −=∆ . Since ,0≤∆  ( ) }{}{}{ 222 yExExyE ≤  and  then 

1
}{}{

}{
22

≤=
yExE

xyE
rxy , which is the first property.  

 

If 1|| =xyr , then ( ) 0}{}{4}{2 222 =−=∆ yExExyE . Therefore there is a specific ψ  

value called xψ  for which .0)( =xP ψ This leads to ( ) 0}{)( 2 =−= yxEP xx ψψ . The 

last relation shows that xy xψ= .  

 
 

 
 
 
 
 
 


